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DERIVATION OF THE EQUATIONS FOR THE SOLUTION OF A
NONLINEAR INVERSE HEAT CONDUCTION PROBLEM USING
ITERATIVE REGULARIZATION

INTRODUCTION

The problem of solving for the surface heat flux, g, as a function of time, t, is solved
for the nonlinear inverse heat conduction problem. The iterative regularization method of
Alifanov [ ] is used. The solution requires adjoint and sensitivity problems as well as the
direct problem. The adjoint boundary value problem can be derived by different ways

[, ]. The approach based on the analysis of Lagrangian functional stationary conditions

[ ]is used. This functional is written for the problem of constraint minimization of the
residual functional, S(q) with respect to q where q(t) is the desired surface heat flux. The
residual functional is the integral of the square deviation between the measured and
calculated temperatures at the thermosensor positions. Note that the measurements are first

~assumed to be continuous and that the desired heat flux is also continuous. Therefore,

equations of the analyzed mathematical model play the role of constraints for calculated
values of temperature.

Three problems must be solved. The first is the direct problem, the second problem
is the sensitivity problem and the third problem is the adjoint problem. The direct problem
involves solution of the nonlinear heat conduction equation

oT _ d(,.aT |
pc(I)Et- = ax(k(n ax), 0<x<L, O<tst, ¢
T(x,0) = T (x), O<x<L ‘ 2)
K10)°5%D - ) = 9 @)
B KT(L,)) a’gf" + BILD) = 4,0 @

By assigning the different values to the parameters, g, and p_, it is possible to analyze
the boundary condition of the first, second and third kinclls on the’boundary x=L. The heat
flux g, is known. The thermal conductivity k is a function of temperature, T, and the
specific heat c is also. The density p is assumed to be constant with T. The thickness of
the body is L.
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In the inverse heat conduction problem, the heat flux q(t) is unknown, but there is
the additional information about the state variable T in the form of temperature history
measured at a point inside of the [0,L] interval,

T, . @b = Y@ &)

where d is the coordinate of thermosensor location and Y(t) is the measured temperature.
The temperature could be measured at many locations inside the body but for simplicity
only one is considered herein. The main equation to change will be the adjoint equation
and the change to accomodate multiple interior temperatures will be given.

The q(t) function is to be estimated by minimizing the residual functional

Y V
S@) = [Y®) - TdoPdt + a[lg 0 - qFde ©
0 0

with respect to this function. The constant « is a regularizing constant; for the iterative
regularizing method it could be zero. The difficulty in minimizing Eq. (6) is that it is an
integral and that q(t) is a function. The adjoint method is used to overcome these problems.

DIRECTIONAL DERIVATIVE

For the finite dimensional problem (finite number of heat flux components) the
gradient of S, VS(q), is determined by using standard differential calculus. For the infinite
dimensional problem (q(t), t is continuous), it is necessary to develop an adjoint problem
to compute the gradient VS(q), which is needed in the minimization process.

Definition of VS(q)

The gradient of the functional S(q) at q(t), denoted VS(q), is related to the variation
of S at q(t) by the equation

i

S(q+eAq) -8 = f VS(t;q(0)eAq(t)dt + hzgher order terms (7a)

where € is a real number and Agq(y) is some time-variable deviation from g4(y).
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The directional derivative of S at q(t) in the direction Aq(t), denoted DpgS(@), is
defined by

e-0 €
and is related to the gradient VS(q) by

s
D,S@ = [VS(sa®)Aq(d (7c)
0

The units of p, S(q) are the same as those of S, namely, K2s. The units of VS(t,q() are
m?/W. In the following sections, an explicit expression for VS(t;q) is derived; it utilizes
the solution of the sensitivity and adjoint problems.

DEFINITION OF SENSITIVITY FUNCTION

Let AT, be the time-and space-varying increment of temperature resulting from the
change of the unknown function q(t) in the amount eAgq; that is,

AT,, = Txt,g+eAq) - T(xtq) (82)

The directional derivative of T, D, T(q), evaluated at (x,t) in the direction Ag, is defined
as above in connection with Eq. (7b) so that

D, Twt(®) = li?ﬂx,t;quqE) - Txtq) (8b)

This is also called a sensitivity function which will have the notation 8(x,t), or
6x) a D, qT(x,t;q) 8¢c)

which has the units of K. The problem defining the sensitivity function is found using the
direct problem for q + €Aq and then for g; the corresponding equations are subtracted and
the limiting process defined by Eq. (8b) is applied. This is discussed further below.

DIRECT PROBLEM AS TWO LAYERS

This problem is to be solved using the Lagrange multiplier method. Before using this
method for this case, it aids our thinking to divide the body into two regions, from x = 0 to
d and then from x = d to L. One can imagine a fictitious internal boundary passing the
measurement point atx = d. Then the heat conduction model, Egs. (1) - (4), can be written




as a heat conduction problem for a two-layer system with ideal thermal contact between
layers and both of them having the same temperature-dependent thermal properties. The
describing equations are,

oT, 9 oT, A
pc(Tl)-éT‘ == (k(Tl)—ax-‘), O<x<d, O<tst, (9a)

oT, 3 oT.
pc(T, EZ = a(k(Tz)Ez], d<x<L, 0<t<st, (9b)
T(x0) = T(x), Osx<d, (10a)
T,(x,0) = T(x), dsx<L, (10b)

oT,(0,z
~KT,(Ly) gx - 40 | (11
Ty d) aTz(d,t)’ a2)

ox ox
Tl(dst) = Tz(d,t)’ (13)
OT,(Ls)

B,KT(L,D)) Za(x’t) + BT = q,() (14)

The above equations (9) -(14) are another statement of the direct problem when q(t) is
known. .

SENSITIVITY PROBLEM

The sensitivity problem is now found for the direct problem just given. Thé
directional derivatives are found using the above formalism. The direct equations given by
Egs. (9) -(14) are formed with q(t) replaced q(t) + €Aq which gives T(x,t;q+ €Aq). The
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equations are again used for q(t) to get T(x,t;q). Consider now the left hand side of Eq.
(92) and notice that there is a 1 subscript which is omitted for the moment. The q(t) in Eq.
(11) is to be replaced by g(z) + eAq(z). The left hand side of Eq. (9a) with
pc(T(x,t;q+ eAq) expanded in a Taylor series about T(x,t;q) is

pelTigrerg) TUXAD [pcarq» . p"c‘d’;q”AT]a“";qu) (150)

where AT = T(q + eAq) - T{q) and the dependence on x and t is also omitted for
convenience. Now the expression for the left side of Eq. (9) with T(x,t;q) is subtracted from
this equation to get after taking the limit of g-Q

inf {oetrtarea0) TLRD - ey T2
e-0| € ot ot

- 8 . d{Tlg) T
pc(T(g) % P ar e (15b)

where Eq. (8) is used. This result can be used for evaluating the right side for Eq. (9a).
We can write

9 rep) T4 €AQ)) _ 8 Mg .
ax(kmq eagy 2L ) ax(k(th)) ax)

a . dl(g+eAq) _ oI(q) 15
ax(katq eag)TLAD gy 2D ) (15¢)

Now use Eq. (15b) with pc-k and ¢-x to get

fim 1 [—E-’-(kmquq»——-—a’.“’ *"'A"’) _ i(k(nq»-——a””)] -
€ x ox ox

e~0 ox 0

B (man 8 + HI@) 3@ g) _
ax(k(rtq)) 2, i) e)

2 2
a(kae) . g_g(a_r)e , &PTy . dcdT®

9(, 98 ITy , k3T 154
a\ ax) | grelex dT 52 dT ox ox (15d)
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Using the results given by Equs. (15b) and (15d) and following the same procedure for the

other equations gives

+

a(k(T‘ael) . gk oI, 98,

s
c — I e——
PO %% Tl Ve T a m a

N A
i, " gde) Para

0<x<d,0<tstf

08, _ a(k(Tﬁ@z) . dk 0T, 98, .

Ty—2 = %
B ") e

d I, | dzk{aT’]z - piiﬁ
dT, ax? dezk ox dr, ot | ¥

d<x<L,0<tstﬂc
0,x0) =0,0<x<d,

6,x0) =0,d <x <L,

~KT,(0.)

a@l(:) ) _ dk(Tl(O,t)) aTl(o’t) 91(0”) = Aq(®)

dar ox

00,(df) _ 98,(d)
ox B x

(16)

aan

(18)

(19)

(20)

@1




7
8,(d) = 8,(d,) (22)

008,(L,) oT,(L,t) dk({T,(L,?)
BAHTLD)—— + |Bi— u — )
2

+ Bz}ez(L’t) =0 (23)

Equations (16)-(23) form the sensitivity problem. Notice that it is a linear problem for the
dependent variables of @ Nex) and @,(x,) even though the direct problem is nonlinear.
Also note that the nonlinearity of the direct problem (caused by temperature-dependence
of the thermal conductivity and volumetric specific heat) results in additional terms being
introduced into the sensitivity partial differential equations, Eqs. (16) and (17). If these
properties are independent of temperature, Eqs. (16) and (17) reduce to exactly the same
form as those for the direct problem. In any case the Ag(f) term is the only
nonhomogeneous term and is the driving "force" or energy term in the set of equations; if
it were always zero, the solution for the sensitivity problem would be also zero.

The directional derivative of S in the direction Aq is related to the sensitivity
problem by

D,S@ = 2 [YO-Td)] [-8dnl + 2a[" [q.(0-q0)] [-Aq)}e  @4)

LAGRANGE FUNCTIONAL

The task is now to find q(t). This is to be accomplished by minimizing the sum of
squares functional, Eq. (6), by employing the Lagrange multipliers. A Lagrange multiplier
is defined for each equation from Eq. (9) through Eq. (14). Each of these equations is
rearranged to equal zero, multiplied by a Lagrange multiplier, integrated over the
appropriate domain, and added to Eq. (24). The resulting Lagrangian is

oT, oT;
L=5q+[" fodwl(x,r)[§<k<Tl)—ax—‘) - pe(T)—tdudt +

t oT. oT.
[ [F ¢2<x,r)[a—i<k<rz —af) - po(Ty)—"= dxdt +

[ n@OT@0-T@ps + [ @oLe0-T,md +




¢ aT, (0,
[0 [Ic(n(o,r)) 0, q<t)]ra '

[ [6Tl(d,t) _ aTz(d,t)]d \
0 ax ox

[u@dp (1@ - T +

OT(L, |
[In@y [B1/<(T2(L,t)) g(x D BT - qL(t)]dt 25)

where

w,'(x’t)’ i =12 'qi(x,O), i =12 TI(OJ); T](d,t); p’(d,t) and T](L’t)’

are Lagrange multipliers for corresponding constraints (9) - (14).
DIRECTIONAL DERIVATIVE OF THE LAGRANGIAN

Now the objective is to derive the adjoint equations. The directional derivative of
the Lagrangian functional can be derived using the definitions given above, such as Eq. (7b).
Symbolically one can write

D, L =D,S@ + D, [, +D,J, + Dy1yo + Dyl + Dy Ly (26)

where the subscript pde denoted part1a1 differential equation and is related to Equs. (9a,b)
for T and (16) and (17) for @, ic is for initial condition (Equs (10a,b), (18) and (19); bc0
is for the x = 0 boundary condition (Equs. (11) and (20)); int is for the interface conditions
(Equs. (12), (13), (21) and (22)); and bcL is for the boundary condition at x = L (Equs. (14)
and (23)). D, S(g) is given by Eq. (24). Note that the adjoint variables are not functions
of the unknowsi q(t) Then using the sensitivity equations, the various terms in Eq. (26) are

_ (Y re d 08, dk 0T 98,
Dudye = [y |, "’1"‘"){5("”1} ax) YT e




dk &T, dzk{ aT) de OT,

o0
8, - pc(T)—} dxdt
dT, ox? dﬂax 1~ pe(Ty) ot *

t {99, dk oI, 08,
[2 [} e ,r){ (k(Tz, ax) & 22

,
2
a FT, % (aTz) g o, o, - pc(Tz)ae2 t an
dT, &® gr? dT, o ax | &
D =fd (x,0)8,(x,0)dx +f‘ (x,0)8, (x,0)dx (28)
Aq‘Iic 0 N, 1\ dnz ’ 2\

, 80,0,  dk(T,(0,) 3T,(0.)
Dyoo = [ (o,t)[k(T,(o,t)) R el(o,r)-»Aq(r)]dt @9

009,(d 00.(d. ’
Dy = [0 ‘d”)[ éi 2 - zai ’t)] dt + [ p(dy) [0,dD - B,dpjdr B0

‘ 00,(L,1) T,(L,t)) 0T (L) |
D1, = fof" (L,t){[ilk(TZ(L,t)) i’)x +[pl‘”‘(;T2 ) gx + pz]ez(L,t)}dt 31)

There are two almost identical parts in Eq. (27), one for ¢ < x < 4 and the other for 4 < x < L. Since
the same procedure is followed for both, only the first part is considered in detail. There are six basic
components to the integral denoted p, I  ; eachis considered separately. The goal is to use integration
by parts so that the derivative will be of{ ¥, (x,t) (0,- ¥, (x, t)) rather than on @ Ner)) (or 6,(x,0)). This
procedure ultimately yields the adjoint equatlons FlI'St let ‘us consider the first term in Eq (27),

t 08
DL, ~ fof od ‘I’l(x’t)-é% (k(Tl)a—xl]dvdt 32)
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By using integration by parts, one can get

5.2} Py dk OT, oy
2ol ot £ m

ox? dTl ox ox

8,dxdt (33)

In a similar manner one can get for the second and sixth terms,

d
_yrd . dk 9T, 98, _ o d& 9T,
Padpaz = 3 ¥ 5 =57 % = [lar & W@ -

NN

&T, 2, (or,\ T, &
:;a 1+‘”§( 1)1+"" L Milg avdr 34)
2 dr:

Dyhpaes = [ f‘f pey,— ldtdx f (P8, |ddx- -f f‘f[ a“;* +p j; aat qulGdtdx (35)

The third, fourth and fifth terms of s e do not contain derivatives of @ .

Substituting expressions (33) - (35) in (27) and using similar relations for the second region, one can get
after cancellations

34‘1 azqu
ot

DyJLos = fotf j;,d

0, dxdt +

ft’f [ —a—qiz+k%]€dxdt+

oy dk 9T, ‘
T S T S WP |
f[ o e T am ‘]L '




o) oy dk OT. L
Y by, o2 - Y2 dk ° -
], [’“"’ = Hmertaga® 92] &
d
- [ lpcw®) [ ax - [Fpcy,8,) [ ax (36)

For more details, see Appendix A.

Integration by parts cannot be used for the other directional derivatives, p A
through p, fI .- The sum of, expressions (24), (28), (29) and (37) is the “directional
derivative of th Lagrangian functional.
Now let us consider the stationary conditions of the Lagrangian functional p 4 L=0.

For these purposes, it is necessary to make independent coefficients in the Lagrangian
functional variation equal to zero for the corresponding sensitivity functions,

6,(x,0), 8,(x,9), 8,(09), 98,(0,0)/x,

00,(L,p)/dx, 98,(d,5)[ox, 98,(d,1)/ox, 8,(d,), 8,(d,D), 8,(L1), 08,(L,t)/0x, 8,(x,0), 8,(x.1),

6,(x,0) and 8,(x,t). o _
One can get affer equating the coefficients equal to zero, (see Appendix B)

- atl"l _ 8 awl - dk aTl a"l’l 37
e = & (k(Tl) ax) T, o O 0y @7
Y, 9 oy, gk OT, v,
cpe(T) 22 = Slur .  de<x<l, 38
pell) ax(( ) 8x) dT, or o dex<L, O<i<t, (38)
¥ifut)=0, (39
¥fu)=0 (@)
oy, (0,7)

KT, =0 @1)

HT 9L




12

oy, (dy)  oy,dY)
k(Tl(d,t))[ éx - gx = -2[¥Y())-T,(dD)] (42)
¥, = ¥,(dD) (43)
oy, (Lt
ﬁlk(TZ(L’t)) wgi ) + pzq’z(L:t) =0 (44)

At the interface T,(d) in Eq. (42) is also equal to T,(d,5). Egs. (37) - (44) provide the
adjoint problem.

This problem is also linear. Notice that the nonhomogeneous terms are only in the
interface condition, Eq. (42). A very important point is that these equations for the
complete adjoint problem must be solved backward in time; the initial conditions, given by
Egs. (39) and (40) are at the final time, t, If ¢ is replaced by t, - 1, the problem
becomes the usual forward one.

Another observation relates to the nonlinearity of the direct problem. Though both
the sensitivity and adjoint equations are linear even if the direct problem is nonlinear, the
forms of the equations are different from each other and the original direct problem. If the
problem were linear, each of these would be the same. It is interesting to note that the
form of the adjoint partial differential equations is included in the sensitivity problem,
although the interface equations are different.

The nonhomogeneous term in Eq. (42) can be introduced into the differential

equation. The effect of this term, which is caused by the difference between the calculated -

and measured temperatures, can be simulated by plane volume source. Then instead of
solving the problem in two parts, it can be solved in one part and have one ¥ in the
solution. The resulting adjoint problem is then equivalently written as

- pen 2 - -aa;(km%x"i) R T v @9
¥ty = O, (46)
K10 ED - o )

rslk(T(L,r))al;fﬂ + B = 0 @8)
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The term 2(T(x,7)-¥())8(x-d) acts like a plane source (or sink) at x = d. As convergence
proceeds, the term tends to become smaller. If this term were equal to zero, then the
adjoint variable y(x,f) goes to zero.
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MULTIPLE MEASURED TEMPERATURES

For the case of multiple measured temperatures, the sum of squares functional
becomes

S@=Y. [ [t0-Td0fdt + o[ a,0-a@fd (49)
J=1

for the case of m sensors. This equation is a generalization of Eq. (6) which is for a single

sensor. Few changes are needed to accommodate multiple sensors. The direct model given

by Egs. (1) to (4) remain’the same. v
The sensitivity problem can be written as :

penZ - (m—a;) RIS .
&7, dyory gt
dTax:  gri\ex)  Para
0<x<L0<tst (50)
with boundary conditions
—KT(0,) 59(0 ) ‘”"(g;’ ), 67;;’ 10D g0, = Aq0) (51a)

BK(I(L, t)\GQ(Lt) + |8, 87;’5 ?) dk(T(L 0), +B, 0L =

The initial condition is _
= 2
8(x0) =0 £ (52)

The adjoint equation is the only one that is really changed. Figs) (45) - (48) remain
the same except the last term in Eq. (45) is replaced by

23 [T()-¥(x0)]5(x-d)
. =l
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APPENDIX A. DIRECTIONAL DERIVATIVE OF I, FOR REGION 1

The parts of the directional derivative of Ipde, region 1, are:

d
_ (v %, dk O 8¥, . P81 0% Al
Dy = fofod[kaxz - edudt + [k, S k8 dt (A1)

yrd di 82T La%(n)' gk 8T, dy, e [ 2 3T [’ (A2)
e (195 "1y 0| | ar
Pudpser fddr ax? Vi dT?\ ¥ dT, &x & +fo dT, o V1O

_ ryrd de OT, d2k{8T _dc 9T, A3
Dadoicas = foftdel o2 dT2k ax)  Par e WOy @3)

d or,
Dyl - ftxfa[ LI ;; - ]@dxdt [(pcw,8,)ltax Y

These expressions are added to get D, 1 A number of cancellations occur. The second term of
the pde,1 equation cancels with the tﬁderd term of the pde2 equation. The first term of
the pde,2 equation cancels with pde3. The second term of the pde2 equation cancels with pde.

Finally, the pde,5 term cancels w1th the second term in the pde,6 equation. The result of addmg the

above pde components is
Py oy
t
Dyoues = J [ T ‘{ — + po— ! Bydds

L %1 allll dk aT d
*fo{"“’f?a;"‘ael e

-[ “pcir,®, | (A.5)

Recall that this is just for the first region 0 < x < d. A similar expression is found for the second region.




16
APPENDIX B. DIRECTIONAL DERIVATIVE OF L

The various terms of the directional derivative of the Lagrangian L are now
combined to obtain

D, L=-2[" [Y()-Ttd}8,(@ddt-2a [ [q,, O -a]Aq(tt

+ DAqude + DMI‘.C + DAqucO + DAqu + DAqucL (B.1)

where D ke is given by Eq. (36); D D, I, is glven by Eq. (28); D A is given by Eq.

(29); D adlins 1 given by Eq. (30); andA D, L. is given by Eq. (Bf) At the minimum

of D, L, 1t is equal to zero. Let us then co &ct the various terms as coefficients of the

varlous sensitivity functions, 8, and 8, and derivatives arranged in the following order:
8,(x,0), 8,(x,1), 8,(0,9), 38,(0, t)lax, 2(L Bfox, 08,(d;1)/ox, 98,(d,p)/ox, ©,(d,1), 8,(d,),
0,(L), 3,(LEx, 8,(:0), 6,(x,), 6,(x0) and O,(x,1).

Then p adk is given by

D,L - frff [azq:, . a;l:l]@l(x’t)dxdt

f "f L{ @ + pc& L, (x,0)dxdt

oy, (o 9 dqT00) 3Ty(0) di{T,(0,1)) OT,(0,%)
+ 1 +KT,(0,0) e HOAmOI—o= — 8O

1( ,t)

+ [7 [-HTOD),0.0 + nOIKT,0.)]

dt

7 aez(L»t)
+ [ HLEAL + nLOBHT,LY)] —
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00,(d,
[ @@ + n@n] P
| 08,(d,
o [ [T - n@n) 2

f" KT,(d0) ay, (d 3] dk(z ;d ) oT (d )

1

K Oy, (dyt T(ds)) oT,(d;t
+ f;,’ l+k(T2(d,t)) q"za(x ) dk( ‘127('4) i )q’2 @ - udd, t)] (e +
2

¥,(@n) + pdn)-2Y()-T(d, t))]el(d t)dt

, oy (Lt) T,(Lf) aT(Lt) T,(L,t)) OT,(L,)
[ ’{ KAL) — dk(dsz ) Dy ey t)[ i aT, ) - [sz]} 8,(Li)d

dt

¥ 98,(L)
+ [ HEEORLD + nOBKLLN)—

+ [ [P0, E0) + O, (x0dx
« J, TodT)w o s
+ [ ¥ [PTmONTE0) + (500, (x,0dx

o [ el e

+ [¥[20 [g..0-40)] + nO.)]Aqde (B2)
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Each of above integrals is now considered separately with two exceptions. These exceptions are the sixth
and seventh integrals (related derivatives through Eq. (21)) and integrals 8 and 9 (related by continuity of ).
Recall that the directional derivative is equal to zero. Also each integral is independent of the others except
6 and 7, and 8 and 9; hence, each integral (except 6th and 7th, and 8th and 9th) must be equal to zero. From
the first integral which is for @ L0, we obtain the partial differential equation,

& d
w1+pc—;’7‘-=0,0<x<d,0<t<tf (B.3)

k
ox?

This is a partial differential equation because there is a double integration, one on each independent variable.
The same reasoning for the second integral yields ‘

& )
__iz_+pc_q:3,d<x<1,,o<t<tf (B.4)
ox? ot

Consider next the third integral in Eq. (B.2), the one for @ (0,s), which involves integration only over ¢,
This integral can be used to find the . boundary condition. Let us choose

oy, (0,
k (T,(0.9) "’;i ) Lo (B.5a)
¥,0,5) = n(0,0) (B.5b)

The fourth integral is made equal to zero by using Eq. (B.5b).
The fifth integral is satisfied by the condition

BnLy) = -¥,(L,) (B.6)

The sixth and seventh integrals are considered together. These equations can be satisfied by having
continuity conditions on

¥y,(d0) = §,(d,0) (B.7a)

since Eq. (21) gives
98,(dy)  98,(dy)
& ox

(B.7b)




19

The eighth and ninth integrals in Eq. (B.2) are considered together. Eq. (B.7a) and the sensitivity relation
swven by Eq. (22),

8,(d,p) = 8,(d) (B.8a)
then yield
qr (C4)) aq: a9
KTy (dp) ——— + KT, d))—
-2 [Y()-Td)] = 0 (B.8b)
The derivatives dk/dT and 3Tjax are also continuous atx = d. Egs. (B.7a) and (B.8b) are interface conditions
for y(x.
Before considering integral 10, use the eleventh integral to get

Wb = B B9

" en this reltaion is used in the integrand of integral ten, and after a cancellation, one obtains

LD o bad =0 (B.10)

B KT, (LD)

At t = 0, the sensitivity functions @ ,&0) and @, (x,p) are equal to zero. (See Equs. (18) and (19).
Consequently, integrals twelve and fourteen are satisfied (that is, equal to zero).

The thirteenth and fifteenth integrals (the ones involving @ (51D and @ ,(%,t)) are satisfied by using the
zero initial conditions on y, given by Equs. (39) and (40). :

This now leads to the last integral in Eq. (B.2). We do not set this coefficient equal to zero. Instead,
notice that Eq. (5b) permits Eq. (B.2) to be written as' (using Eq. (B.5b))

Dy U@ = [ [-20(a,0)-a@)+¥,00]Aq0)dt (B.11)
which is also equal to p ag 5@)- Then comparing Eq. (B.11) with Eq. (7c), the gradient of S is

VS(:9®) = ¥,00) - 20(g,O-q0) (B.12)

b:ihcp-art.wpl




